Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Bis(isoquinoline-1-carboxylato$\left.\kappa^{2} O, N\right)\left(1,10\right.$-phenanthroline- $\left.\kappa^{2} N, N^{\prime}\right)$ zinc(II) dimethylformamide sesquisolvate

Jean-Claude Daran, ${ }^{\text {a }}$ Pascale Lemoine ${ }^{\text {b }}$ * and Bernard Viossat ${ }^{\text {b,c }}$
${ }^{\text {a }}$ Laboratoire de Chimie de Coordination, UPR 8241 CNRS, 205 route de Narbonne, 31077 Toulouse CEDEX 04, France, ${ }^{\mathbf{b}}$ Laboratoire de Cristallographie et RMN
biologiques, UMR 8015 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques de Paris V, 4 avenue de l'Observatoire, 75270 Paris CEDEX 06, France, and
${ }^{\text {c }}$ Laboratoire de Chimie Générale, Faculté de Médecine et de Pharmacie, 34 rue du Jardin des Plantes, BP199, 86005 Poitiers CEDEX, France
Correspondence e-mail: lemoine@pharmacie.univ-paris5.fr

Received 22 October 2001
Accepted 30 January 2002
Online 12 March 2002
The asymmetric unit of the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{2}{ }^{-}\right.$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot 1.5 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, contains one monomeric zinc complex and 1.5 disordered dimethylformamide solvate molecules. The Zn atom is coordinated to one 1,10-phenanthroline ligand and to two isoquinolinecarboxylate anions (IQC^{-}) via their N and O atoms. The complex exhibits a distorted octahedral geometry around the $\mathrm{Zn}^{\mathrm{II}}$ atom, with the apical positions occupied by the O atoms of the IQC^{-}ligands. The Zn atom lies 0.049 (1) \AA out of the basal plane. The crystal packing is characterized by several hydrogen bonds.

Comment

Complexes of $\mathrm{Cu}^{\text {II }}, \mathrm{Fe}^{\text {III }}, \mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}, \mathrm{Ti}^{\mathrm{IV}}$ and $\mathrm{Zn}^{\text {II }}$ with 3,5disubstituted salicylates (non-steroidal anti-inflammatory drugs, NSAIDs), and ternary complexes of $\mathrm{Cu}^{\mathrm{II}}$ with added phenanthrolines, have been prepared and characterized by Ranford et al. (1993). Following this work, we have recently synthesized and characterized a ternary complex of $\mathrm{Cu}^{\mathrm{II}}$ with N, O-isoquinoline-1-carboxylic acid (HIQC) and the heteroaromatic nitrogen base 2,9-dimethyl-1,10-phenanthroline (Lemoine \& Viossat, 2001). In the present work, we describe the synthesis and crystal structure of bis(isoquinoline-1-carboxylato- $\left.\kappa^{2} O, N\right)\left(1,10\right.$-phenanthroline- $\kappa^{2} N, N^{\prime}$)zinc(II) dimethylformamide sesquisolvate, (I).

In monomeric (I), the Zn atom is surrounded by one bidentate 1,10-phenanthroline ligand, coordinated via atoms N 21 and N30, and two anionic bidentate isoquinolinecarboxylate (IQC^{-}) ligands, coordinated via atoms $\mathrm{N} 1, \mathrm{O} 1$, N 11 and O11. The complex exhibits a distorted octahedral geometry around the $\mathrm{Zn}^{\mathrm{II}}$ atom, with the apical positions occupied by atoms O1 and O11. The Zn atom lies 0.049 (1) \AA
out of the basal plane ($\mathrm{N} 1 / \mathrm{N} 11 / \mathrm{N} 21 / \mathrm{N} 30$). The degree of deviation from an ideal octahedron is appreciable, with the angles of the octahedron ranging from 76.04 (6) to 101.16 (6) ${ }^{\circ}$.

(I)

The $\mathrm{Zn}-\mathrm{N} 21$ and $\mathrm{Zn}-\mathrm{N} 30$ distances in (I) are in agreement with those observed in cis-diaquabis(1,10-phenanthroline)zinc sulfate hexahydrate $[2.136$ (3)-2.192 (4) \AA; Hu \& Liu, 1991] and in the $\left[\mathrm{Zn}(1,10-\text { phenanthroline })_{3}\right]^{2+}$ complex (mean 2.17 Å; Bencini et al., 1989), but are clearly longer than those in $\left[\mathrm{Zn}\left(1,10\right.\right.$-phenanthroline) $\left.\mathrm{Cl}_{2}\right]$ (mean $2.06 \AA$; Khan \& Tuck, 1984), due to the change in coordination number from six to four. The chelation of $\mathrm{Zn}^{\mathrm{II}}$ by the IQC^{-}ligands in (I) leads to planar N/C/C/O/Zn rings, $P 1$ ($\mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 1 / \mathrm{O} 1 / \mathrm{Zn}$) and $P 2 \quad(\mathrm{~N} 11 / \mathrm{C} 12 / \mathrm{C} 11 / \mathrm{O} 11 / \mathrm{Zn})$; the maximum deviation is 0.067 (2) \AA for atom N11, with a dihedral angle between planes $P 1$ and $P 2$ of 83.18 (4) ${ }^{\circ}$.

The $\mathrm{Zn}-\mathrm{O}$ [mean 2.069 (1) \AA] and $\mathrm{Zn}-\mathrm{N}\left(\mathrm{IQC}^{-}\right)$[mean 2.141 (2) \AA] distances compare with the corresponding values in a similar environment in diaquabis[2,2,5,5-tetramethyl-1-oxo-3-imidazoline-4-carboxylato]zinc(II) [2.07 \AA for mean $\mathrm{Zn}-\mathrm{O}$ and $2.09 \AA$ for mean $\mathrm{Zn}-\mathrm{N}$; Kozhemyak et al., 1980]. The isoquinoline mean planes, $P 3(\mathrm{~N} 1 / \mathrm{C} 2-\mathrm{C} 10)$ and $P 4$ (N11/C12-C20), make dihedral angles of 3.66 (4) and 7.85 (4) ${ }^{\circ}$ with planes $P 1$ and $P 2$, respectively. The $\mathrm{Zn}^{\mathrm{II}}$ atom is displaced from the 1,10-phenanthroline least-squares plane $P 5$ (N21/C22-C29/N30/C31-C34) by 0.221 (1) A. The dihedral angles between planes $P 1$ and $P 5$, and $P 2$ and $P 5$ are 89.60 (4) and $73.00(4)^{\circ}$, respectively.

Figure 1
A perspective view of the asymmetric unit of (I) showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The N 40 solvent molecule has an occupancy of 0.5 .

The crystal structure of (I) is completed by disordered dimethylformamide (DMF) solvate molecules. In the first DMF molecule, the three C atoms (C50, C51 and C52) and their corresponding H atoms are disordered over two sites, denoted by the suffix A (occupancy 0.73) or B (occupancy 0.27). The N atom (N40) in the second DMF solvent molecule lies on an inversion centre, leading to a statistical disorder.

As shown in Fig. 2, the packing in (I) is governed by $\pi-\pi-$ stacking interactions, which occur between phenanthroline ligands related through inversion centres at $\left(\frac{1}{2}, 0,0\right)$ and $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, thus creating self-assembling dimers, with an average spacing of 3.358 (1) Å. Moreover, two contacts, $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 2$ [2.867 (2) \AA and 123°] and $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 12$ [2.848 (3) \AA and $\left.125^{\circ}\right]$, may be considered as weak hydrogen bonds. Weak van der Waals contacts [the shortest being 3.140 (6) \AA for C22 . .O40] contribute to the cohesion of the crystal structure of (I).

Figure 2
The molecular packing in (I) viewed along [100], showing the π-stacking interactions between phenanthroline ligands.

Experimental

Bis(isoquinolinecarboxylato)zinc(II) was prepared by mixing aqueous solutions of the sodium salt of isoquinolinecarboxylic acid ($1.95 \mathrm{~g}, 10 \mathrm{mmol}$) and zinc chloride ($1.36 \mathrm{~g}, 10 \mathrm{mmol}$) in excess for a better yield. The resulting precipitate was collected by filtration, washed with water and dried overnight. The title complex was obtained in a dimethylformamide medium by reaction of this zinc(II) complex with $1,10-\mathrm{phenanthroline}$ ($\mathrm{Phen} / \mathrm{Zn} 1: 1$). The reaction mixture was stirred for 30 min . Colourless parallelepiped crystals of (I) were obtained by slow evaporation.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Zn}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot-} \\
& \quad 1.5 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO} \\
& M_{r}=699.55 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=17.077(2) \AA \\
& b=12.747(1) \AA \\
& c=14.422(1) \AA \\
& \beta=93.22(1)^{\circ} \AA \\
& V=3134.2(5) \AA^{3} \\
& Z=4 \\
& D_{x}=1.482 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Zn1-O11	2.0531 (14)	C1-C2	1.540 (3)
Zn1-O1	2.0851 (14)	O11-C11	1.273 (2)
Zn1-N11	2.1285 (16)	N11-C12	1.321 (3)
Zn1-N1	2.1537 (15)	C11-O12	1.229 (3)
Zn1-N21	2.1845 (15)	C11-C12	1.535 (3)
Zn1-N30	2.1873 (15)	N21-C34	1.354 (2)
O1-C1	1.270 (2)	N30-C31	1.355 (2)
N1-C2	1.323 (2)	C31-C34	1.439 (3)
C1-O2	1.232 (2)		
O11-Zn1-O1	165.63 (5)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	125.25 (18)
O11-Zn1-N11	77.50 (6)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	119.13 (17)
O1-Zn1-N11	93.82 (6)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	115.61 (16)
O11-Zn1-N1	93.51 (6)	$\mathrm{C} 10-\mathrm{N} 1-\mathrm{Zn} 1$	124.17 (13)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	76.35 (6)	$\mathrm{C} 11-\mathrm{O} 11-\mathrm{Zn} 1$	118.08 (12)
N11-Zn1-N1	98.85 (6)	N11-C12-C11	113.91 (16)
O11-Zn1-N21	94.45 (6)	O11-C11-C12	115.43 (17)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 21$	96.23 (6)	C12-N11-Zn1	114.41 (12)
N11-Zn1-N21	165.91 (6)	C20-N11-Zn1	124.62 (13)
N1-Zn1-N21	93.12 (6)	O12-C11-O11	124.92 (18)
$\mathrm{O} 11-\mathrm{Zn} 1-\mathrm{N} 30$	101.16 (6)	$\mathrm{O} 12-\mathrm{C} 11-\mathrm{C} 12$	119.64 (17)
O1-Zn1-N30	90.74 (5)	N21-C34-C31	117.61 (16)
N11-Zn1-N30	94.00 (6)	C22-N21-Zn1	127.62 (13)
N1-Zn1-N30	162.29 (6)	C34-N21-Zn1	114.09 (12)
N21-Zn1-N30	76.04 (6)	C29-N30-Zn1	127.53 (13)
N1-C2-C1	113.32 (15)	C31-N30-Zn1	114.03 (12)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Zn} 1$	118.48 (12)	N30-C31-C34	117.54 (16)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Zn} 1$	115.50 (12)		

Data collection

Stoe IPDS diffractometer

φ scans

24106 measured reflections 6128 independent reflections 5303 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

$$
\begin{gathered}
\theta_{\max }=26.1^{\circ} \\
h=-20 \rightarrow 21 \\
k=-15 \rightarrow 15 \\
l=-17 \rightarrow 17
\end{gathered}
$$

Refinement

Refinement on F^{2}
$R(F)=0.033$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0429 P)^{2}\right.$
$+1.7050 P]$
$w R\left(F^{2}\right)=0.082$
$S=1.03$
6128 reflections
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
490 parameters
H -atom parameters constrained
$\Delta \rho_{\max }=0.39 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.36 \mathrm{e}_{\AA^{-3}}$

H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C})$, and $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

Data collection: IPDS Software (Stoe \& Cie, 1996); cell refinement: IPDS Software; data reduction: XRED (Stoe \& Cie, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TR1009). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

metal-organic compounds

Bencini, A., Midollini, S. \& Zanchini, C. (1989). Inorg. Chem. 28, 1963-1969. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hu, N.-H. \& Liu, Y.-S. (1991). Acta Cryst. C47, 2324-2326.
Khan, M. A. \& Tuck, D. G. (1984). Acta Cryst. C40, 60-62.
Kozhemyak, N. V., Podberezskaya, N. V. \& Bakakin, V. V. (1980). Zh. Strukt. Khim. 21, 124-128.
Lemoine, P. \& Viossat, B. (2001). Acta Cryst. C57, 1248-1250.

Ranford, J. D., Sadler, P. J. \& Tocher, D. A. (1993). J. Chem. Soc. Dalton Trans. pp. 3393-3399.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1996). IPDS Manual (Version 2.75) and XRED (Revision 1.08). Stoe \& Cie, Darmstadt, Germany.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

